December 31, 2024

3 Phase motor control (Forward Reverse) using TIA portal (Ladder language).

This is PLC Program for 3 Phase Motor control (Forward/Reverse).

 

Problem Description

Write the PLC program for 3 phase motor control (Forward Reverse) in TIA PORTAL using LAD language.

 

 

Problem Diagram

Problem Solution

In this case we'd like to control motor in each direction which will be attainable solely by forward/Reverse negative feedback circuit or Logic.

Here we tend to solve this downside by easy Forward/Reverse management Logic.

So here we are going to take into account one 3 phase motor for Forward and Reverse Operation.

And we can take 2 contactors or relays for control as a result of we'd like 2 totally different directions here.

Also we must always take into account 3 push buttons for forward, reverse and stop operate.

So here operator can use FWD PB for forward operation, REV PB for reverse operation and STOP PB for stop operate.

Program

Here is PLC program for 3 Phase Motor control (Forward/Reverse).

List of Inputs/Outputs

Inputs List:-

FWD PB-I0.0

REV-I0.1

STOP PB-I0.2

Motor Trip-I0.3

Outputs List:-

Forward motor contactor-Q0.0

Reverse motor contactor-Q0.1

 

Ladder diagram for 3 Phase Motor control (Forward/Reverse).




Program Description

In this application we will use Siemens S7-300 PLC and TIA PORTAL Software for programming. We can also design this logic with relay circuit.

Network 1:-In this network forward motor contactor (Q0.0) can be start by pressing FBD PB (I0.0) and can be stopped by pressing STOP PB (I0.2).

Network 2:-In this network reverse motor contactor (Q0.1) can be started by pressing REV PB(I0.1) and can be stopped by pressing STOP PB (I0.2).

 

 

Note:-Application is only for learning purpose .Above application may be different from actual application. This application can be done in other PLC also. Users are responsible for correct operation of the PLC system and for any possible injuries and or material damages resulting from the use of this program. It is necessary to take care of safety during implementation, installation, maintenance and operation.

 

All parameters and graphical representations considered in this example are for explanation purpose only, parameters or representation may be different in actual applications. Also all interlocks are not considered in the application.